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Abstract

Estimation of small area population means under a two-fold nested error lognormal model is de-
rived. Different authors have worked on the one-fold nested error model where only one aggregated
level is modeled. Based on a two-stage sampling design, the aim of this manuscript is to propose
a model which represents both types of variation, the variation across domains and the variation
across cluster within each domain, under the log-transformation of the variable of interest. The
minimum mean error squared predictor (MMSEP) of a small-area mean is obtained explicitly un-
der this model. Replacing the unknown variance components involved in the MMSEP estimator
by their estimators obtained from the Fisher scoring algorithm for restricted maximum likelihood,
we provided the Emprirical best (EB) predictor. In the framework of Prasad and Rao (1990), we
obtained the closed form expressions of the mean squared error (MSE). Closed form expressions,
based on bias correction, for the EB predictor and the bootstrap bias-corrected MSE estimator are
obtained. Results are supported by a simulation study.
Keywords: Two-fold nested error lognormal model; Empirical Bayes prediction; Mean squared
error; Bias-correction; Small area estimation.

Resumen

En este trabajo se estudia una variable de interés, en el contexto de estimación para áreas pequeñas,
cuya distribución es asimétrica. El modelo SAE (Small Area Estimation) que consideramos, es un
modelo lineal mixto bajo una transformación logaŕıtmica. El modelo mixto con efectos anidados a
un nivel ha sido estudiado por diferentes autores; en este modelo, las áreas pequeñas son modeladas
asumiendo un solo nivel de agregación. Sin embargo, en muchos estudios es de interés incorporar
al modelo niveles adicionales de agregación, para tomar en cuenta variabilidad extra o incorporar
caracteŕısticas del diseño muestral. En este reporte presentaremos los predictores óptimos de la
media poblacional de la variable de interés (BLUP’s) y los predictores EBLUP’s corregidos, aśı
como expresiones anaĺıticas para los Errores Cuadráticos Medios (MSE)(Prasad and Rao 1990).
Además, se propone un método bootstrap paramátrico para corregir el sesgo en la estimación de
MSE. La teoŕıa propuesta se evalúa mediante un estudio de simulación.

1



 
 Table of Contents

1 Introduction 3

2 Two-fold nested error lognormal model 4
2.1 Two-fold nested error linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Two-fold nested error lognormal model . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Minimun MSE predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Empirical Bayes predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Fisher-scoring algorithm under restricted maximum likelihood . . . . . . . . . . . . . 10

3 MSE estimation for the EB predictor 11
3.1 Derivation of the expressions of M1i . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Derivation of the expressions of M2i . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Derivation of the corrected EB predictor 26

5 Parametric bootstrap for MSE estimation 27
5.1 Bias-corrected MSE estimator based on single bootstrap . . . . . . . . . . . . . . . . 28
5.2 Double parametric bootstrap for bias-correction . . . . . . . . . . . . . . . . . . . . . 30
5.3 Bias-corrected MSE estimator based on double bootstrap . . . . . . . . . . . . . . . 31

6 Simulation study 32
6.1 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Concluding remarks and future research 34

Acknowledgement 35

References 35

List of Figures

1 Average sqrt MSE across the domains with respect to the change in variance com-
ponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Averages of population and predicted values obtained after 100 simulations, with
σ2
v = 0.05 and σ2

u = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

List of Tables

1 Combinations of σ2
u and σ2

v for a simulation experiment . . . . . . . . . . . . . . . . 33

2



 
 1 Introduction

Public and private sectors use survey information, provided by statistical agencies, to support gov-
ernment policies and business decisions, position a product on the market, etc. Typically these
surveys are designed to produce information for the target sampling population and for large pop-
ulation subgroups.

Multistage sampling designs are used in many practical cases, when a design involves two dif-
ferent aggregation levels, domain (small area) and sub-domains (sub-small areas or clusters), it is
reasonable to assume a twofold nested error model including random effects explaining the het-
erogeneity at the two levels of aggregation. In this report, we consider the two-fold nested error
lognormal regression model for estimating small area means. This model includes small area and
sub-small area (cluster) effects to account for the unexplained between-area and between-cluster
heterogeneity, respectively.

Following the definition given by Rao (2003), the term small area or small domain refers to a
subpopulation for which the domain-specific sample is not large enough to produce direct estimates
with reliable precision. This subpopulation can be a small geographical area (county, state, district,
etc.), a demographic group within a geographical region (specific sex-age group, etc.) or any sub-
division of the population. One possible solution to improve direct estimates is to borrow strength
from other related data sets by using the data either from similar areas, or using relevant auxiliary
information (covariates) obtained from census or some other administrative records.

Some variables of interest are skewed distributed and there is a need to provide small area es-
timates for these variables. The problem of highly skewed data is, according to Barnett and Lewis
(1994), particularly common in business and social surveys. Usual standard estimation methods,
under a linear model, for the characteristic of interest (mean in this case) of a skewed variable can
be inappropriate.

Small area methods based on the ideas of non-normal distributions have been considered. Slud
and Maiti (2006) proposed an empirical Bayes or best (EB) predictor for a small area mean assum-
ing that the area-level direct estimators have a lognormal distribution. Ghosh and Maiti (2004)
discussed a small area unit-level model based on natural exponential quadratic variance function
families, where they assumed that the covariates are the same across units in a single small area.
Chandra and Chambers (2011) considered a lognormal distribution as a basis for constructing a
model-based direct estimator for a small area mean. Its model is a weighted sum of sampled units
in which the weights are defined to give the minimum mean squared error linear predictor of the
population mean when the parameters of the lognormal distribution were known.

The model considered by Berg and Chandra (2014) is referred to the one-fold nested error model
since only one aggregated level, the small area, is modeled. In this study, we propose a two-fold
lognormal model which is different from the Berg and Chandra (2014) because we work with a
two-fold unit-level data instead of one-fold unit-level data. Furthermore, we consider the case of
cluster-specific covariates as in Datta and Ghosh (1991) and Pfeffermann and Barnard (1991).

The rest of this report is organized as follows. In section 2, the general form of a two-fold nested
error lognormal model is presented; the minimum meam squared error predictor (MMSEP) of the
small-area mean Ȳi is explicitly obtained, this predictor depends on unknown variance components
which are estimated by the restricted maximun likelihood (REML) method in order to obtain the
empirical Bayes (EB) predictor. The MSE estimation of the resulting EB predictor, is obtained in
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 Section 3. The corrected EB predictor to the second-order, is obtained in Section 4. In Section 5,

we propose an approximately unbiased estimator of the MSE corrected to the second order based
on bootstrap method. Results of a simulation study on the relative bias of the MSE estimator are
reported in Section 6. Section 7 contains the concluding remarks.

2 Two-fold nested error lognormal model

2.1 Two-fold nested error linear model

Different authors have worked on the one-fold nested error model where only one aggregated level,
the small area, is modeled. However, in many real applications, it may be of interest to incorporate
additional aggregated levels in the model to account for extra variability or to reflect the sampling
design. In complex survey sampling, the sample is selected in stages to reduce the cost. At the first
stage, primary sampling units (PSU) or clusters are selected. Within each PSU, secondary sampling
units (SSU) are selected where in some situations are considered as observational sampling units or
individuals units. Fuller and Battese (1973) proposed a two-fold model, that can be used to model
data from such complex design in order to capture variability from both the PSU and SSU levels,
and its transformation where the transformed quantities are the differences between the original
observations and multiples of averages of subsets of obsevations. Later, Datta and Ghosh (1991,
under a Bayesian framework, and Pfeffermann and Barnard (1991) used the two-fold model for
the special case of cluster-specific covariates. Stukel and Rao (1999) extended the results of Datta
and Ghosh (1991) and Pfeffermann and Barnard (1991) to general two-fold nested error regression
models, considering the unit-level covariates to be available.
For the classical model-based approach, the characteristics of interest, y, and the coavariates, X, are
available at the unit level and the linear mixed models (LMM) are used to represent the assumed
stochastic relationship between the quantities (Battese et al., 1988). The two-fold nested error
linear model is formally defined as (Stukel and Rao, 1999)

Yijk = xTijkβ + vi + uij + eijk; i = 1, . . . ,M ; j = 1, . . . ,Mi; k = 1, . . . , Nij , (1)

where the value yijk is the observed characteristic of interest associated to unit k from cluster j
within small area i, the covariates xTijk = (xijk1, . . . , xijkp) are a 1× p vector of known variables, β
is a p × 1 vector of unknown regression parameters, and the area effects vi, the cluster effects uij
and the residual errors eijk are assumed to be mutually independent. Furthermore,

vi ∼ N(0, σ2
v), uij ∼ N(0, σ2

u), eijk ∼ N(0, σ2
e).

The parameter of interest is the small area population mean

Ȳi =
1

Ni

Mi∑
j=1

Nij∑
k=1

yijk.

In the settings of the theory of prediction presented by Henderson (1975), the following theorem
gives the form of the best predictor (BP) and shows why it has a minimum mean squared error.

Theorem 1. Under the two-fold nested error linear model (1), the best predictor of the small
area mean Ȳi, i = 1, . . . ,M is given by Ȳ BP

i = E(Ȳi|ys) where ys is the observed characteristic of
interest, with

ˆ̄Y BP
i (θ) =

1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

ỹ∗BPijk +
∑
j∈s̄i

Nij∑
k=1

ỹ∗∗BPijk

]
, (2)
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 where s̄ij is the set of nonsampled units in the jth sampled cluster and s̄i is the set of nonsampled

sampled clusters in small area i. Also, the predictors ỹ∗BPijk and ỹ∗∗BPijk , from (2), are defined as
follows

ỹ∗BPijk = xTijkβ + ṽBPi + ũBPij

ỹ∗∗BPijk = xTijkβ + ṽBPi , (3)

where ṽBPi = E(vi|ys) and ũBPij = E(uij |ys).

Proof. Let’s consider another estimator ˆ̄Yi of Ȳi function of ys then

MSE( ˆ̄Yi) =E( ˆ̄Yi − Ȳi)2

=E( ˆ̄Yi − Ȳ BP
i + Ȳ BP

i − Ȳi)2

=E( ˆ̄Yi − Ȳ BP
i )2 + E(Ȳ BP

i − Ȳi)2 + 2E( ˆ̄Yi − Ȳ BP
i )(Ȳ BP

i − Ȳi)

=MSE(Ȳ BP
i ) + E(Ȳ BP

i − Ȳi)2 + 2E( ˆ̄Yi − Ȳ BP
i )(Ȳ BP

i − Ȳi).

Since E(Ȳ BP
i − Ȳi)2 is positive, it suffices to show that E( ˆ̄Yi − Ȳ BP

i )(Ȳ BP
i − Ȳi) = 0. Note that

ˆ̄Yi − Ȳ BP
i is a function of ys say f(ys), it follows that

E( ˆ̄Yi − Ȳ BP
i )(Ȳ BP

i − Ȳi) =E(f(ys)(Ȳ
BP
i − Ȳi))

=E(f(ys)Ȳ
BP
i )− E(f(ys)Ȳi)

=E(f(ys)Ȳi)− E(f(ys)Ȳi)

=0.

Which means that MSE( ˆ̄Yi) ≥MSE(Ȳ BP
i ).

The above equality is the direct application of the following conditional expectation property

E(f(X)E(Y |X)) = E(f(X)Y ).

Therefore, the best predictor Ȳ BP
i can be written as:

Ȳ BP
i =E(Ȳi|ys)

=
1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

E[yijk|ys] +
∑
j∈s̄i

Nij∑
k=1

E[yijk|ys]

]
. (4)

2.2 Two-fold nested error lognormal model

Suppose that the ith small area contains Mi first-stage units or primary sampling units (or clusters)
and that the jth cluster in the ith area contains Nij second-stage units or observational (or simple)
sampling units (elements). Let (Yijk, Xij) be the y-value and x-value for the the kth element in
the jth cluster from the ith area (k = 1, 2, . . . , Nij ; j = 1, 2, . . . ,Mi; i = 1, 2, . . . ,M). Under this
population structure, we consider a two-stage sampling in each small area, where a sample si, of
mi clusters is selected from the ith sampled small area and, if the jth cluster is sampled, then a
subsample, sij , of nij elements is selected from it. Without loss of generality, the sample values are
denoted by (yijk, xij), (k = 1, 2, . . . , nij ; j = 1, 2, . . . ,mi; i = 1, 2, . . . ,m).

Under the aforementioned population structure, we obtain ˆ̄YMMSE
i using the following nested error
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 two-fold regression model on the logarithm of the variable of interest. The proposed model in its

general form for all population units, is given by

k = 1, 2, . . . , Nij

log(yijk) ≡ lijk = xTijβ + vi + uij + eijk, j = 1, 2, . . . ,Mi

i = 1, 2, . . . ,M,

(5)

where the area effects vi, the cluster effects uij and the residual errors eijk are assumed to be
mutually independent. Furthermore,

vi ∼ N(0, σ2
v), uij ∼ N(0, σ2

u), eijk ∼ N(0, σ2
e).

The objective is to predict the value of small area population mean:

Ȳi =
1

Ni

Mi∑
j=1

Nij∑
k=1

yijk. (6)

2.3 Minimun MSE predictor

Since the variance of a small area estimator based on the direct small area sample is excessively
large, there is a need for constructing model based estimators with low mean squared prediction
error (MSPE). This section introduces the minimum mean squared predicted error (MMSE), known
also as Best/Bayes predictor (BP) of a function of a random vector in a finite population.
We assume that the sample values have the mentioned structure and follow the assumed model (5).
Thus the sample model may be written as

k = 1, 2, . . . , nij

log(yijk) ≡ lijk = xTijβ + vi + uij + eijk, j = 1, 2, . . . ,mi

i = 1, 2, . . . ,m,

(7)

where, for notational simplicity, the sample clusters, si, are denoted as j = 1, 2, . . . ,mi and
sample elements sij as k = 1, 2, . . . , nij .
Following theorem.1, the minimum MSE predictor of the Ȳi is E[Ȳi|(y, x)], where (y, x) = {yijk, i ∈
s, j ∈ si, k ∈ sij} ∪ {xij , i = 1, . . . ,m; j = 1, . . . ,Mi}. Where s is the set of indices of those small
areas that are in the sample.

Theorem 2. Under the assumed model, (5), the expression for the minimum MSE predictor is

ˆ̄YMMSE
i =E[Ȳi|(y, x)]

=
1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

E[yijk|(y, x)] +
∑
j∈s̄i

Nij∑
k=1

E[yijk|(y, x)]

]

=
1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

E[exp{lijk}|(y, x)] +
∑
j∈s̄i

Nij∑
k=1

E[exp{lijk}|(y, x)]

]
. (8)

This expression reflects two cases to be discussed, first: The sub-small area within the small area
sampled and contains some observations from the sample, which corresponds to the second term to
the right (8); second: The sub-small area within the small area sampled, and does not contain any
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 observations from the sample. This corresponds to the third term to the right of (8) .

The model (7) in matrix form for each j ∈ si is as follows:

lij = Xijβ + vi1nij + uij1nij + eij , (9)

where

lij =


lij1
lij2
...

lijnij


nij×1

; Xij =


xTij
xTij
...
xTij


nij×p

= 1nij ⊗ xTij ; eij =


eij1
eij2

...
eijnij


nij×1

.

From (9), the variance of the vector of transformed variable, lij , is given by

var(lij) =σ2
v1nij1

T
nij

+ σ2
u1nij1

T
nij

+ σ2
eInij

=σ2
vJnij + σ2

uJnij + σeInij .

Then by a given i we have the vector, li, that combines the expressions represented in (9)

li =


lTi1
lTi2
...

lTimi

 =


Xi1

Xi2
...

Ximi

β +


1ni1

1ni2

...
1nimi

 vi +


1ni1

1ni2

. . .

1nimi



ui1
ui2
...

uTimi

+


ei1
ei2
...

eimi

 ,
and its variance is given by

Vi =


(σ2
v + σ2

u)Jni1 + σ2
eIni1 σ2

vJni1ni2 . . . σ2
vJni1nimi

σ2
vJni2ni1 (σ2

v + σ2
u)Jni2 + σ2

eIni2 . . . σ2
vJni2nimi

...
σ2
vJnimi

ni1 σ2
vJnimi

ni2 . . . (σ2
v + σ2

v)Jnimi
+ σ2

eInimi

 ,
where 1K is a vectors of 1′s with a length K, IK is an identity matrix and JK is a matrix of 1′s of
dimension K ×K respectively.
Now, we have a joint distribution of the expressions represented by (7) for a given small area i.

li =


li1
li2
...
lin

 ∼ N(

Xi1

Xi2
...

Ximi

β, Vi) ≡ N(Xiβ, Vi).

It follows that

l̄i =


l̄i1
l̄i2
...
l̄in

 =


1
ni1

1Tni1
li1

1
ni2

1Tni2
li2

...
1

nimi
1Tnimi

limi

 =


1
ni1

1Tni1
1
ni2

1Tni2

. . .
1

nimi
1Tnimi



li1
li2
...

limi


=Wili.
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 Note that

WiXiβ =


xTi1
xTi2
...
xTin

β = xiβ,

and

V̄i =WiViW
T
i =


1
ni1

1Tni1
1
ni2

1Tni2

. . .
1

nimi
1Tnimi

Vi


1
ni1

1ni1
1
ni2

1ni2

. . .
1

nimi
1nimi



=


(σ2
v + σ2

u) + 1
ni1
σ2
e σ2

v . . . σ2
v

σ2
v (σ2

v + σ2
u) + 1

ni2
σ2
e . . . σ2

v
...
σ2
v σ2

v . . . (σ2
v + σ2

u) + 1
nimi

σ2
e

 .
Then

l̄i ∼ N(xiβ, V̄i),

Considering the case where the sub-small area, j, has some observations within the sample, it follows
that

cov(uij , l̄i) = cov(uij ,Wili)

= C
(j)T
1 W T

i = WiC
(j)
1 = σ2

u



0
...
1
0
...
0


(mi×1)

= α(j),

cov(vi, l̄i) = cov(vi,Wili) = σ2
vWicov(li, vi)

=σ2
vWi


1ni1

...
1nij

...
1nimi


(ni×1)

= σ2
v

1
...
1


(mi×1)

= γ.

Now the joint distribution is l̄iuij
vi

 ∼ N(
xiβ0

0

 ,
 V̄i α(j) γ

α(j)T σ2
u 0

γT 0 σ2
v

). (10)

From (10), we have

E(

[
uij
vi

]
| l̄i) =

[
α(j)T

γT

]
V̄ −1
i (l̄i − xiβ) ≡ µ1j

8



 
 and

var(

[
uij
vi

]
| l̄i) =

[
σ2
u 0

0 σ2
v

]
−
[
α(j)T

γT

]
V̄ −1
i

[
α(j) γ

]
≡ Σ1j .

Using the above conditional expressions and the moment generating function of the lognormal
distribution,it follows

E(exp{vi + uij} | l̄i) = exp{1Tµ1j +
1

2
1TΣ1j1}.

Now the expression of the second term in (8) is given by

ỹ∗ijk ≡ E(yijk | l̄i) = exp{xTijβ + 1Tµ1j +
1

2
1TΣ1j1 +

1

2
σ2
e}. (11)

Next we consider the second case with a sub-small area, r, in the sampled small area, but does not
have any observation in the sample, it follows that

E(uir | li) = E(uir | l̄i) = 0.

Now the joint distribution is  l̄iuir
vi

 ∼ N(
xiβ0

0

 ,
 V̄i 0 γ

0T σ2
u 0

γT 0 σ2
v

). (12)

Proceeding the same way as in the first case and using (12) we have

E(

[
uir
vi

]
| l̄i) =

[
0T

γT

]
V̄ −1
i (l̄i − xiβ) ≡ µ2

and

var(

[
uir
vi

]
| l̄i) =

[
σ2
u 0

0 σ2
v

]
−
[

0T

γT

]
V̄ −1

[
0 γ

]
≡ Σ2.

Using the above results the moment generating function of the lognormal distribution, we have

E(exp{vi + uir} | l̄i) = exp{1Tµ2 +
1

2
1TΣ21},

and the expression of the third term in (8) is given by

ỹ∗∗ijk ≡ E(yijk | l̄i) = exp{xTijβ + 1Tµ2 +
1

2
1TΣ21 +

1

2
σ2
e}. (13)

Substituting the expressions (11) and (13) in (8), the minimum MSE predictor, under the assump-
tion that θ = (β, σ2

v , σ
2
u, σ

2
e)
T is known, is given by

ˆ̄YMMSE
i (θ) =E[Ȳi|(y, x)]

=
1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

ỹ∗ijk(θ) +
∑
j∈s̄i

Nij∑
k=1

ỹ∗∗ijk(θ)

]
. (14)
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 2.4 Empirical Bayes predictor

In practice, θ is not unknown, so it is not possible to calculate (??). We replace the true value of
θ with its consistent estimator to obtain the Emprical Bayes (EB) predictor. Let θ̂T = (β̂, σ̂) be
a restricted maximum likelihood (REML) estimator. By substituting the true θ in (??) with an
estimator, we obtain

ˆ̄Y EB
i =

1

Ni

∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

ỹ∗ijk(θ̂) +
∑
j∈s̄i

Nij∑
k=1

ỹ∗∗ijk(θ̂)

 , (15)

where
ˆ̄Y EB
i = ˆ̄YMMSE

i (θ̂), ŷ∗EBijk = ỹ∗ijk(θ̂), and ŷ∗∗EBijk = ỹ∗∗ijk(θ̂) .

2.5 Fisher-scoring algorithm under restricted maximum likelihood

The sample model (7) may be seen as a special case of a general linear mixed model with block
diagonal covariance structure, involving fixed and random effects, and a small-area mean can be
expressed as a linear combination of fixed effects and realized values of random effects i.e., a model
composed by m independent submodels:

lij = col1≤k≤nij
(lijk), li = col1≤j≤mi(lij), l = col1≤j≤m(li),

where
lij = 1nij (x

T
ijβ) + 1nijvi + 1nijuij + eij ,

and
li = diag1≤j≤mi(1nij ⊗ xTijβ) + 1nivi + diag1≤j≤mi(1nij )ui + ei,

with 1ni = col1≤j≤mi(1nij ).
Then, the matrix form of the model is

l = Xβ + Z1v + Z2u+ e, (16)

where
X = Xn×p, Z1 = diag1≤i≤m(1ni), Z2 = diag1≤i≤m(diag1≤j≤mi(1nij ))n×d,
n =

∑m
i=1 ni, ni =

∑mi
j=1 nij , d =

∑m
i=1mi.

The model (16) can be rewritten in the following form

l = Xβ + Zw + e, (17)

where, Z = (Z1, Z2) and w = (vT , uT )T .
The variance, V , of l is given by V (σ) = diag1≤i≤m(Vi(σ)),
where Vi is defined in the previous section and σ = (σ2

v , σ
2
u, σ

2
e)
T is the vector of unkown parameters

involved in the covariance structure of the model.
Following Henderson (1975), the best linear unbiased estimator (BLUE) of β in (17) is given by

β̃(σ) = (XTV −1(σ)X)−1XTV −1(σ)l.

Replacing an restricted maximum likelihood (REML) estimator, σ̂, of σ in previous equation we
obtain the so called empirical BLUE (EBLUE) β̂ = β̃(σ̂).
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 The REML method maximizes the joint probability density of n−p linear independent contrasts

ω = Al, where AT is an n × (n − p) full column rank matrix satisfying AAT = In−p and BX = 0.
Thus, the probability density function of ω does not depend on β and is given by

L(ω|σ) = (2π)
−(n−p)

2 |XTX|1/2|V (σ)|−1/2|XTV −1(σ)X|−1/2 exp

[
−1

2
lTP (σ)l

]
,

where

P (σ) = V −1(σ)− V −1(σ)X(XTV −1(σ)X)−1XTV −1(σ).

Note that P (σ) satisfies P (σ)V (σ)P (σ) = P (σ) and P (σ)X = 0n.

The REML estimator of σ is the maximizer of lREML(σ) = logL(ω|σ). The fact that the REML
equations are nonlinear, they do not have closed analytical solutions. We adapt the iterative tech-
nique for solving the REML equations. A common variant of Newton-Raphson (NR) algorithm is
Fisher-scoring method, which is appears to be slightly more robust to initial values than strict NR
(Jennrich and Sampson, 1976), which replaces the inverse of the Hessian matrix by its expected
value, which after allowing for a change in sign, turns out to be defined by the inverse of Fisher’s
information matrix.

Let S(σ) = ∂lREML(σ)/∂σ = (S1(σ), . . . , S3(σ)) and F (σ) = −E[∂lREML(σ)/∂σ∂σT ] = (Fqr(σ))
be the scores vector and the Fisher information matrix respectively. Using the fact that

∂P (σ)

∂σs
= −P (σ)

∂V (σ)

∂σs
P (σ), q = 1, 2, 3,

the first order partial derivative of lREML(σ) with respect to σs is given by

Sq(σ) = −1

2
trace

[
P (σ)

∂V (σ)

∂σq

]
+

1

2
lTP (σ)

∂V (σ)

σq
P (σ)l, q = 1, 2, 3.

Then, taking the negative expectation of second order partial derivative of lREML(θ) with respect
to σq and σr, the element (q, r) of the Fisher information matrix is obtained by

Fqr(σ) =
1

2
trace

[
P (σ)

∂V (σ)

∂σq
P (σ)

∂V (σ)

∂σr

]
, q, r = 1, . . . , 4.

Then, assuming σs to be the value of the estimator at iteration s, the updating expression of the
Fisher-scoring algorithm is

σs+1 = σs + [F (σs)]−1S(σs).

3 MSE estimation for the EB predictor

Since our goal is to use the predictor of the population mean in practice, we need to compute the
mean square error of MMSE predictor, as well as its estimator.
The MSE of an EB predictor, or EBLUP under normal assumption, can be written as a sum of two
terms (Kackar and Harville, 1984; Prasad and Rao, 1990):

MSE( ˆ̄Y EB
i ) = Mi1(θ) +Mi2(θ), (18)

where
M1i = E[(Ȳi − ˆ̄YMMSE

i )2] and M2i = E[( ˆ̄YMMSE
i − ˆ̄Y EB

i )2].
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 The first term, Mi1(θ), is the variance of the error in the minimum MSE predictor (14), the predictor

obtained under the true (unknown) θ. The second term accounts for variability of the predictor due
to estimation of the parameters in θ = (βT , σT )T .
In the next two subsections, we give a closed form expression for Mi1(θ) and a linear approximation
for Mi2(θ) respectively.

3.1 Derivation of the expressions of M1i

In this subsection we derive the expression of the first term of the right-hand side of (18).

M1i = E[(Ȳi − ˆ̄YMMSE
i )2] = E[(Ȳi − E[Ȳi|(y, x)])2] = E[var(Ȳi|(y, x))]

=E

{
1

N2
i

[
var

(∑
j∈si

∑
k∈sij

yijk +
∑
j∈si

∑
k∈s̄ij

yijk +
∑
j∈s̄i

Nij∑
k=1

yijk|(y, x)

)]}

=E

{
1

N2
i

[
var

(∑
j∈si

∑
k∈s̄ij

yijk|(y, x)

)
+ var

(∑
j∈s̄i

Nij∑
k=1

yijk|(y, x)

)
+ 2cov

(∑
j∈si

∑
k∈s̄ij

yijk,
∑
r∈s̄i

Nir∑
p=1

yirp|(y, x)

)]}

=
1

N2
i

(
E(V1) + E(V2) + 2E(C1)

)
. (19)

Starting by the first term, it follows that

V1 =var

∑
j∈si

∑
k∈s̄ij

yijk|(y, x)


=cov

∑
j∈si

∑
k∈s̄ij

yijk,
∑
q∈si

∑
p∈s̄iq

yiqp|(y, x)


=
∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄ir

cov(yijk, yirp|(y, x)). (20)

The conditional covariance is defined by

cov(yijk, yirp|(y, x)) = E[yijkyiqp|(y, x)]− E[yijk|(y, x)]E[yiqp|(y, x)].

Note that 
l̄i

2vi
uij
uiq

 ∼ N(

xiβ
0
0
0

 ,


V̄i 2γ α(j) α(q)

2γT 4σ2
v 0 0

α(j)T 0 σ2
u 0

α(q)T 0 0 σ2
u

). (21)

From (21), it follows that

E
(2vi

uij
uir

 | l̄i) =

 2γT

α(j)T

α(r)T

 V̄ −1(l̄i − xiβ) ≡ µ1jq (22)

and

var
(2vi

uij
uiq

 | l̄i) =

4σ2
v 0 0

0 σ2
u 0

0 0 σ2
u

−
 2γT

α(j)T

α(q)T

 V̄ −1
i

[
2γ α(j) α(q)

]
≡ Σ1jq. (23)
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 Taking into acount for different cases that can occcure between j and q, and between k and p, we

have

E[yijkyiqp|(y, x)] =

[exp{2(xTijβ + 1Tµ1j + 1TΣ1j1 + σ2
e)}I(k = p)+

exp{2(xTijβ + 1Tµ1j + 1TΣ1j1) + σ2
e}I(k 6= p)]I(j = q)+

[exp{xTijβ + xTiqβ + 1Tµ1jq +
1

2
1TΣ1jq1 + σ2

e}]I(j 6= q). (24)

and

E[yijk|(y, x)]E[yiqp|(x, y)] =

= [exp{2(xTijβ + 1Tµ1j) + 1TΣ1j1 + σ2
e}]I(j = q)+

[exp{xTijβ + xTiqβ + 1T (µ1j + µ1q) +
1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q). (25)

We have from (24) and (25) that

cov(yijk, yiqp | l̄i) =

[(exp{2(xTijβ + 1Tµ1j + 1TΣ1j1 + σ2
e)} − exp{2(xTijβ + 1Tµ1j) + 1TΣ1j1 + σ2

e})I(k = p)+

(exp{2(xTijβ + 1Tµ1j + 1TΣ1j1) + σ2
e} − exp{2(xTijβ + 1Tµ1j) + 1TΣ1j1 + σ2

e})I(k 6= p)]I(j = q)+

[exp{xTijβ + xTiqβ + 1Tµ1jq +
1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ + 1T (µ1j + µ1q)+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q).

From the subsection 2.3, it follows that

E(1Tµ1j) =0

var(1Tµ1j) =1TVµ1j1,

where

Vµ1j = var(µ1j) =

[
α(j)T

γT

]
V̄ −1
i

[
α(j) γ

]
.

Then we have

E[cov(yijk, yiqp | l̄i)] =

exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}(exp{1TΣ1j1 + σ2

e} − 1)I(k = p)+

(exp{1TΣ1j1} − 1)I(k 6= p)]I(j = q)

+ [exp{xTijβ + xTiqβ +
1

2
1TVµ1jq1 +

1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ +
1

2
1T (Vµ1j + Vµ1q)1+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q).

Within the expression above we add and subtract exp{1TΣ1j1}I(k = p)
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E[cov(yijk, yiqp | l̄i)] =

[exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}(exp{1TΣ1j1 + σ2

e} − exp{1TΣ1j1})I(k = p)+

exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}(exp{1TΣ1j1} − 1)]I(j = q)

+ [exp{xTijβ + xTiqβ +
1

2
1TVµ1jq1 +

1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ +
1

2
1T (Vµ1j + Vµ1q)1+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q)

=v11jI(k = p)I(j = q) + v12jI(j = q) + v13jqI(j 6= q),

where

v11j = exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}(exp{1TΣ1j1 + σ2

e} − exp{1TΣ1j1})
v12j = exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2

e}(exp{1TΣ1j1} − 1).

v13jr = exp{xTijβ + xTiqβ +
1

2
1TVµ1jq1 +

1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ +
1

2
1T (Vµ1j + Vµ1q)1+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}.

It follows that

E(V1) =
∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

v11jI(p = k)I(q = j) +
∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

v12jI(q = j)+

∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

v13jqI(q 6= j)

=
∑
j∈si

∑
k∈s̄ij

v11j

∑
q∈si

∑
p∈s̄iq

I(p = k)I(q = j)

+
∑
j∈si

∑
k∈s̄ij

v12j

[∑
q∈si

∑
p∈s̄ir

I(q = j)

]
+

∑
j∈si

∑
q∈si

v13jqI(q 6= j)

∑
k∈s̄ij

∑
p∈s̄ir

1


=
∑
j∈si

(Nij − nij)v11j +
∑
j∈si

(Nij − nij)2v12j +
∑
j∈si

∑
q∈si

(Nij − nij)(Niq − niq)v13jqI(q 6= j).

(26)

Here we calculate the expression of the second term of (19)

V2 =var

∑
g∈s̄i

Nig∑
k=1

yigk|(y, x)


=cov

∑
g∈s̄i

Nig∑
k=1

yigk,
∑
r∈s̄i

Nir∑
k=1

yirk|(y, x)


=
∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

cov(yijk, yirp|(y, x)). (27)

The covariance in (27) is given by

cov(yigk, yirp|(y, x)) = E[yigkyirp|(y, x)]− E[yigk|(y, x)]E[yirp|(y, x)].
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 Note that 

l̄i
2vi
uig
uir

 ∼ N(

xiβ
0
0
0

 ,

V̄i 2γ 0 0

2γT 4σ2
v 0 0

0T 0 σ2
u 0

0T 0 0 σ2
u

). (28)

From (28), it follows that

E
(2vi

uig
uir

 | l̄i) =

2γT

0T

0T

 V̄ −1
i (l̄i − xiβ) ≡ µ3, (29)

and

var
(2vi

uig
uir

 | l̄i) =

4σ2
v 0 0

0 σ2
u 0

0 0 σ2
u

−
2γT

0T

0T

 V̄ −1
i

[
2γ 0 0

]
≡ Σ3. (30)

Proceeding the same way as in the case of V1, it follows that

E[yigkyirp|(y, x)] =

[exp{2(xTigβ + 1Tµ2 + 1TΣ21 + σ2
e)}I(k = p)+

exp{2(xTigβ + 1Tµ2 + 1TΣ21) + σ2
e}I(k 6= p)]I(g = r)+

[exp{xTigβ + xTirβ + 1Tµ3 +
1

2
1TΣ31 + σ2

e}]I(j 6= r). (31)

and

E[yigk|(y, x)]E[yirp|(x, y)] =

[exp{2(xTigβ + 1Tµ2) + 1TΣ21 + σ2
e}]I(g = r)+

exp{xTigβ + xTirβ + 21Tµ2 + 1TΣ21 + σ2
e}]I(g 6= r). (32)

we have from (31) and (32) that

cov(yigk, yirp | l̄i) =

[(exp{2(xTigβ + 1Tµ2 + 1TΣ21 + σ2
e)} − exp{2(xTigβ + 1Tµ2) + 1TΣ21 + σ2

e})I(k = p)

+(exp{2(xTigβ + 1Tµ2 + 1TΣ21) + σ2
e} − exp{2(xTijβ + 1Tµ2) + 1TΣ21 + σ2

e})I(k 6= p)]I(g = r)

+[exp{xTigβ + xTirβ + 1Tµ3 +
1

2
1TΣ31 + σ2

e} − exp{xTigβ + xTirβ + 21Tµ2 + 1TΣ21 + σ2
e}]I(g 6= r).

(33)

Factorizing and adding and subtracting exp{1TΣ21} the expression under the I(j = r) we have

cov(yigk, yirp | l̄i) =

exp{2(xTigβ + 1Tµ2) + 1TΣ21 + σ2
e}[(exp{1TΣ21 + σ2

e} − exp{1TΣ21})I(k = p)+

(exp{1TΣ21} − 1)]I(g = r)

+[exp{xTigβ + xTirβ + 1Tµ3 +
1

2
1TΣ31 + σ2

e} − exp{xTigβ + xTirβ + 21Tµ2 + 1TΣ21 + σ2
e}]I(j 6= r).

From the subsection 2.3 notice that

E(1Tµ2) =0

var(1Tµ2) =1TVµ21,
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 where

Vµ2 = var(µ2) =

[
0T

γT

]
V̄ −1
i

[
0 γ

]
.

Then we have

E[cov(yigk, yirp | l̄i)] =

exp{2(xTigβ + 1TVµ21) + 1TΣ21 + σ2
e}[(exp{1TΣ21 + σ2

e} − exp{1TΣ21})I(k = p) + (exp{1TΣ21} − 1)]I(g = r)

+[exp{xTigβ + xTirβ + 1TVµ31 +
1

2
1TΣ31 + σ2

e} − exp{xTigβ + xTirβ + 21TVµ21 + 1TΣ21 + σ2
e}]I(g 6= r)

=v21gI(k = p)I(g = r) + v22gI(g = r) + v23grI(g 6= r),

where

v21g = exp{2(xTigβ + 1TVµ21) + 1TΣ21 + σ2
e}(exp{1TΣ21 + σ2

e} − exp{1TΣ21}),
v22g = exp{2(xTigβ + 1TVµ21) + 1TΣ21 + σ2

e}(exp{1TΣ21} − 1),

v23gr = exp{xTigβ + xTirβ + 1TVµ31 +
1

2
1TΣ31 + σ2

e} − exp{xTigβ + xTirβ + 21TVµ21 + 1TΣ21 + σ2
e}.

It follows that

E(V2) =
∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

v21gI(p = k)I(r = g) +
∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

v22gI(r = g) +
∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

v23jrI(r 6= g)

=
∑
g∈s̄i

Nigv21g +
∑
g∈s̄i

N2
igv22g +

∑
g∈s̄i

∑
r∈s̄i

NigNirv23grI(r 6= g). (34)

The expression of the third term of (19) is given by

C1 =cov

∑
j∈si

∑
k∈s̄ij

yijk,
∑
r∈s̄i

Nir∑
p=1

yirp|(y, x)


=
∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

cov(yijk, yirp|(y, x)). (35)

The covariance is expressed as follows

cov(yijk, yirp|(y, x)) = E[yijkyirp|(y, x)]− E[yijk|(y, x)]E[yirp|(y, x)].

Then, note that 
l̄i

2vi
uij
uir

 ∼ N(

xiβ
0
0
0

 ,


V̄ 2γ α(j) 0
2γT 4σ2

v 0 0

α(j)T 0 σ2
u 0

0T 0 0 σ2
u

). (36)

From (36), it follows that

E
(2vi

uij
uir

 | l̄i) =

 2γT

α(j)T

0T

 V̄ −1(l̄i − xiβ) ≡ µ4j , (37)
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 and

var
(2vi

uij
uir

 | l̄i) =

4σ2
v 0 0

0 σ2
u 0

0 0 σ2
u

−
 2γT

α(j)T

0T

 V̄ −1
[
2γ α(j) 0

]
≡ Σ4j . (38)

Then by referring j ∈ si and r ∈ s̄i it follows

• E[yijkyirp|(y, x)], from (37) and (38) we have

E[yijkyirp|(y, x)] =

E[exp{xTijβ + xTirβ + 2vi + uij + uir + eijk + eirp}|(y, x)]

= exp{xTijβ + xTirβ + 1Tµ4j +
1

2
1TΣ4j1 + σ2

e}. (39)

• E[yijk|(y, x)]E[yirp|(y, x)], from (11) and (13)

E[yijk|(y, x)]E[yirp|(y, x)] =

exp{xTijβ + 1Tµ1j +
1

2
1TΣ1j1 +

1

2
σ2
e} exp{xTirβ + 1Tµ2 +

1

2
1TΣ21 +

1

2
σ2
e}

= exp{xTijβ + xTirβ + 1T (µ1j + µ2) +
1

2
1T (Σ1j + Σ2)1 + σ2

e}. (40)

Then from (39) and (40) we have

cov(yijk, yirp|l̄i) = exp{xTijβ + xTirβ + 1Tµ4j +
1

2
1TΣ4j1 + σ2

e} − exp{xTijβ + xTirβ + 1T (µ1j + µ2)+

1

2
1T (Σ1j + Σ2)1 + σ2

e}. (41)

By (41) it follows

E[cov(yijk, yirp|l̄i)]

= exp{xTijβ + xTirβ + 1TVµ4j1 +
1

2
1TΣ4j1 + σ2

e} − exp{xTijβ + xTirβ + 1T (Vµ1j + V µ2)1 +
1

2
1T (Σ1j + Σ2)1 + σ2

e}

=c1jr − c2jr, (42)

where

Vµ4j =

 2γT

α(j)T

0T

 V̄ −1
[
2γ α(j) 0

]
,

c1jr = exp{xTijβ + xTirβ + 1TVµ4j1 +
1

2
1TΣ4j1 + σ2

e},

c2jr = exp{xTijβ + xTirβ + 1T (Vµ1j + V µ2) +
1

2
1T (Σ1j + Σ2)1 + σ2

e}.

From (42) it follows that

E(C1) =
∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

(c1ijr − c2ijr)

=
∑
j∈si

∑
r∈s̄i

(Nij − nij)Nir(c1ijr − c2ijr). (43)
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 3.2 Derivation of the expressions of M2i

In this subsection we derive the expression of the second term of the right-hand side of (18).

M2i(θ) = E[(ȲMMSE
i (θ)− ȲMMSE

i (θ̂))]

=
1

N2
i

E

[(∑
j∈si

∑
k∈s̄ij

yMMSE
ijk (θ) +

∑
r∈s̄i

Nir∑
k=1

yMMSE
irk (θ)

)
−

(∑
j∈si

∑
k∈s̄ij

yMMSE
ijk (θ̂) +

∑
r∈s̄i

Nir∑
k=1

yMMSE
irk (θ̂)

)]2

=
1

N2
i

E

[∑
j∈si

∑
k∈s̄ij

(
yMMSE
ijk (θ)− yMMSE

ijk (θ̂)

)
+
∑
r∈s̄i

Nir∑
k=1

(
yMMSE
irk (θ)− yMMSE

irk (θ̂)

)]2

=
1

N2
i

E

[∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

(
yMMSE
ijk (θ)− yMMSE

ijk (θ̂)

)(
yMMSE
iqp (θ)− yMMSE

iqp (θ̂)

)
+

2
∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

(
yMMSE
ijk (θ)− yMMSE

ijk (θ̂)

)(
yMMSE
irp (θ)− yMMSE

irp (θ̂)

)
+

∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

(
yMMSE
igk (θ)− yMMSE

igk (θ̂)

)(
yMMSE
irp (θ)− yMMSE

irp (θ̂)

)]
.

=
1

N2
i

∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

E

[(
yMMSE
ijk (θ)− yMMSE

ijk (θ̂)

)(
yMMSE
iqp (θ)− yMMSE

iqp (θ̂)

)]
+

2
1

N2
i

∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

E

[(
yMMSE
ijk (θ)− yMMSE

ijk (θ̂)

)(
yMMSE
irp (θ)− yMMSE

irp (θ̂)

)]
+

1

N2
i

∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

E

[(
yMMSE
igk (θ)− yMMSE

igk (θ̂)

)(
yMMSE
irp (θ)− yMMSE

irp (θ̂)

)]

=
1

N2
i

(
H1 + 2H2 +H3

)
. (44)

Note that,

(yMMSE
ijk (θ)− yMMSE

ijk (θ̂))(yMMSE
irp (θ)− yMMSE

irp (θ̂)) =

yMMSE
ijk (θ)yMMSE

irp (θ)− yMMSE
ijk (θ)yMMSE

irp (θ̂)− yMMSE
ijk (θ̂)yMMSE

irp (θ) + yMMSE
ijk (θ̂)yMMSE

irp (θ̂).

(45)

Now we need to find the approximation of yMMSE
ijk (θ̂). By (11) we have

ỹ∗ijk(θ̂) = exp{xTij β̂ + 1Tµ1j(θ̂) +
1

2
1TΣ1j(θ̂)1 +

1

2
σ̂2
e}

= exp{∆1(θ̂) + Ω1(θ̂)}, (46)

where

∆1(θ̂) =1Tµ1j(θ̂)

Ω1(θ̂) =xTij β̂ +
1

2
(1TΣ1j(θ̂)1 + σ̂2

e).
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 As ∆1 and Ω1 are functions of θ = (β, σ2

v , σ
2
u, σ

2
e)
T . When its estimate θ̂ is used, ∆1(θ̂) and Ω1(θ̂)

can be expanded respectively around ∆1(θ) and Ω1(θ) , by a Taylor series as

∆1(θ̂) ≈∆1(θ) + (θ̂ − θ)T ∂∆1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

= ∆1(θ) + (θ̂ − θ)T∆∗1(θ)

Ω1(θ̂) ≈Ω1(θ) + (θ̂ − θ)T ∂Ω1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

= Ω1(θ) + (θ̂ − θ)TΩ∗1(θ), (47)

where the expressions in ∂∆1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

are calculated as follows

∆∗1(θ) =
∂∆1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

=



∂∆1(θ̂)

∂β̂
(θ)

∂∆1(θ̂)

∂σ̂2
v

(θ)

∂∆1(θ̂)

∂σ̂2
u

(θ)

∂∆1(θ̂)

∂σ̂2
e

(θ)


= 1T



∂µ1j(θ̂)

∂β̂
(θ)

∂µ1j(θ̂)

∂σ̂2
v

(θ)

∂µ1j(θ̂)

∂σ̂2
u

(θ)

∂µ1j(θ̂)

∂σ̂2
e

(θ)


with

∂µ1j(θ̂)

∂β̂
(θ) =−

[
α(j)T

γT

]
V̄ −1xi,

∂µ1j(θ̂)

∂σ̂2
v

(θ) =
([0T

1T

]
−
[
α(j)T

γT

]
V̄ −1J

)
V̄ −1(l̄i − xiβ),

∂µ1j(θ̂)

∂σ̂2
u

(θ) =
(1Tj

0T

− [α(j)T

γT

]
V̄ −1

)
V̄ −1(l̄i − xiβ),

∂µ1j(θ̂)

∂σ̂2
e

(θ) =−
[
α(j)T

γT

]
V̄ −1DV̄ −1(l̄i − xiβ),

where

1j =



0
...
0
1
0
...
0


(mi×1)

; J =

1 . . . 1
...
1 . . . 1


(mi×mi)

; D =


1
ni1

1
ni2

. . .
1

nimi


(mi×mi)

,

and the expressions in ∂Ω1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

are obtained as follows

Ω∗1(θ) =
∂Ω1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

=



∂Ω1(θ̂)

∂β̂
(θ)

∂Ω1(θ̂)

∂σ̂2
v

(θ)

∂Ω1(θ̂)

∂σ̂2
u

(θ)

∂Ω1(θ̂)

∂σ̂2
e

(θ)


,

19



 
 with

∂Ω1(θ̂)

∂β̂
(θ) =xTij ,

∂Ω1(θ̂)

∂σ̂2
v

(θ) =
1

2
1T
∂Σ1j(θ̂)

∂σ̂2
v

(θ)1 =
1

2
1TΣ

(v)
1j 1,

∂Ω1(θ̂)

∂σ̂2
u

(θ) =
1

2
1T
∂Σ1j(θ̂)

∂σ̂2
u

(θ)1 =
1

2
1TΣ

(u)
1j 1,

∂Ω1(θ̂)

∂σ̂2
e

(θ) =
1

2
1T
∂Σ1j(θ̂)

∂σ̂2
e

(θ)1 +
1

2
=

1

2
1TΣ

(e)
1j 1 +

1

2
,

where

Σ
(v)
1j =

[
0 0
0 1

]
−
[
0T

1T

]
V̄ −1

[
α(j) γ

]
+

[
α(j)T

γT

]
V̄ −1JV̄ −1

[
α(j) γ

]
−
[
α(j)T

γT

]
V̄ −1

[
0 1

]
,

Σ
(u)
1j =

[
1 0
0 0

]
−

1Tj

0T

 V̄ −1
[
α(j) γ

]
+

[
α(j)T

γT

]
V̄ −1IV̄ −1

[
α(j) γ

]
−
[
α(j)T

γT

]
V̄ −1

[
1j 0

]
,

Σ
(e)
1j =

[
α(j)T

γT

]
V̄ −1DV̄ −1

[
α(j) γ

]
.

From (46) and (47) we have

ỹ∗ijk(θ̂) = exp{xTij β̂ + 1Tµ1j(θ̂) +
1

2
1TΣ1j(θ̂)1 +

1

2
σ̂2
e}

≈ exp{∆1(θ) + (θ̂ − θ)T∆∗1(θ) + Ω1(θ) + (θ̂ − θ)TΩ∗1(θ)}. (48)

Then by (13)

ỹ∗∗ijk = exp{xTij β̂ + 1Tµ2(θ̂) +
1

2
1TΣ2(θ̂)1 +

1

2
σ̂2
e}

= exp{∆2(θ̂) + Ω2(θ̂)}, (49)

where

∆2(θ̂) =1Tµ2(θ̂),

Ω2(θ̂) =xTij β̂ +
1

2
(1TΣ2(θ̂)1 + σ̂2

e).

Taking into account that ∆2 and Ω2 are functions of θ = (β, σ2
v , σ

2
u, σ

2
e)
T . When its estimate θ̂ is

used, ∆2(θ̂) and Ω2(θ̂) can be expanded respectively around ∆2(θ) and Ω2(θ) , by a Taylor series
as

∆2(θ̂) ≈∆2(θ) + (θ̂ − θ)T ∂∆2(θ̂)

∂θ̂

∣∣∣
θ̂=θ

= ∆2(θ) + (θ̂ − θ)T∆∗2(θ),

Ω2(θ̂) ≈Ω2(θ) + (θ̂ − θ)T ∂Ω2(θ̂)

∂θ̂

∣∣∣
θ̂=θ

= Ω2(θ) + (θ̂ − θ)TΩ∗2(θ), (50)
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 where the expressions in ∂∆2(θ̂)

∂θ̂

∣∣∣
θ̂=θ

are calculated as follows

∆∗2(θ) =
∂∆2(θ̂)

∂θ̂

∣∣∣
θ̂=θ

=



∂∆2(θ̂)

∂β̂
(θ)

∂∆2(θ̂)

∂σ̂2
v

(θ)

∂∆2(θ̂)

∂σ̂2
u

(θ)

∂∆2(θ̂)

∂σ̂2
e

(θ)


= 1T



∂µ2(θ̂)

∂β̂
(θ)

∂µ2(θ̂)

∂σ̂2
v

(θ)

∂µ2(θ̂)

∂σ̂2
u

(θ)

∂µ2(θ̂)

∂σ̂2
e

(θ)


,

with

∂µ2(θ̂)

∂β̂
(θ) =−

[
0T

1T

]
V̄ −1xi,

∂µ2(θ̂)

∂σ̂2
v

(θ) =
([0T

1T

]
−
[

0T

γT

]
V̄ −1J

)
V̄ −1(l̄i − xiβ),

∂µ2(θ̂)

∂σ̂2
u

(θ) =−
[

0T

γT

]
V̄ −1DV̄ −1(l̄i − xiβ),

and the expressions in ∂Ω2(θ̂)

∂θ̂

∣∣∣
θ̂=θ

are obtained as follows

Ω∗2(θ) =
∂Ω1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

=



∂Ω2(θ̂)

∂β̂
(θ)

∂Ω2(θ̂)

∂σ̂2
v

(θ)

∂Ω2(θ̂)

∂σ̂2
u

(θ)

∂Ω2(θ̂)

∂σ̂2
e

(θ)


,

with

∂Ω2(θ̂)

∂β̂
(θ) =xTij

∂Ω2(θ̂)

∂σ̂2
v

(θ) =
1

2
1T
∂Σ2(θ̂)

∂σ̂2
v

(θ)1 =
1

2
1TΣ

(v)
2 1,

∂Ω2(θ̂)

∂σ̂2
u

(θ) =
1

2
1T
∂Σ2(θ̂)

∂σ̂2
u

(θ)1 =
1

2
1TΣ

(u)
2 1,

∂Ω2(θ̂)

∂σ̂2
e

(θ) =
1

2
1T
∂Σ2(θ̂)

∂σ̂2
e

(θ)1 +
1

2
=

1

2
1TΣ

(e)
2 1 +

1

2
,

where

Σ
(v)
2 =

[
0 0
0 1

]
−
[
0T

1T

]
V̄ −1

[
0 γ

]
+

[
0T

γT

]
V̄ −1JV̄ −1

[
0 γ

]
−
[

0T

γT

]
V̄ −1

[
0 1

]
,

Σ
(u)
2 =

[
1 0
0 0

]
+

[
0T

γT

]
V̄ −1IV̄ −1

[
0 γ

]
,

Σ
(e)
2 =

[
0T

γT

]
V̄ −1DV̄ −1

[
0 γ

]
.
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 From (49) and (50) we have

ỹ∗∗ijk(θ̂) = exp{xTij β̂ + 1Tµ2(θ̂) +
1

2
1TΣ2(θ̂)1 +

1

2
σ̂2
e}

≈ exp{∆2(θ) + (θ̂ − θ)T∆∗2(θ) + Ω2(θ) + (θ̂ − θ)TΩ∗2(θ)}. (51)

In the both above cases, the approximation can be represented as follows

∆(θ̂) + Ω(θ̂) ≈∆(θ) + Ω(θ) +
∂∆T

∂θ̂
(θ)(θ̂ − θ) +

∂ωT

∂θ̂
(θ)(θ̂ − θ)

=∆(θ) + Ω(θ) +
(∂∆T

∂β̂
(β) +

∂ΩT

∂β̂
(β)
)

(β̂ − β) +
(∂∆T

∂σ̂
(σ) +

∂ΩT

∂σ̂
(σ)
)

(σ̂ − σ), (52)

where σ = (σ2
v , σ

2
u, σ

2
e)
T .

In continuation we discuss different scenarios for each case

• Case 1:

1 Expressions in H1, i.e j, q ∈ si and j = q

ỹ∗ijk(θ)ỹ
∗
iqp(θ) = exp{2(∆1(θ) + Ω1(θ))},

ỹ∗ijk(θ)ỹ
∗
iqp(θ̂) ≈ exp{2(∆1(θ) + Ω1(θ)) + (β̂ − β)T (∆∗1(β) + Ω∗1(β))+

(σ̂ − σ)T (∆∗1(σ) + Ω∗1(σ))},
ỹ∗ijk(θ̂)ỹ

∗
iqp(θ̂) ≈ exp{2(∆1(θ) + Ω1(θ) + (β̂ − β)T (∆∗1(β) + Ω∗1(β))+

(σ̂ − σ)T (∆∗1(σ) + Ω∗1(σ)))}. (53)

2 Expressions in H1, i.e j, q ∈ si and j 6= q

ỹ∗ijk(θ)ỹ
∗
iqp(θ) = exp{∆(j)

1 (θ) + Ω
(j)
1 (θ) + ∆

(q)
1 (θ) + Ω

(q)
1 (θ)},

ỹ∗ijk(θ)ỹ
∗
iqp(θ̂) ≈ exp{∆(j)

1 (θ) + Ω
(j)
1 (θ) + ∆

(q)
1 (θ) + Ω

(q)
1 (θ) + (β̂ − β)T (∆

(q)∗
1 (β) + Ω

(q)∗
1 (β))+

(σ̂ − σ)T (∆
(q)∗
1 (σ) + Ω

(q)∗
1 (σ))},

ỹ∗ijk(θ̂)ỹ
∗
iqp(θ̂) ≈ exp{∆(j)

1 (θ) + Ω
(j)
1 (θ) + (β̂ − β)T (∆

(j)∗
1 (β) + Ω

(j)∗
1 (β)) + (σ̂ − σ)T (∆

(j)∗
1 (σ))+

Ω
(j)∗
1 (σ)) + ∆

(q)
1 (θ) + Ω

(q)
1 (θ) + (β̂ − β)T (∆

(r)∗
1 (β) + Ω

(r)∗
1 (β))+

(σ̂ − σ)T (∆
(q)∗
1 (σ) + Ω

(q)∗
1 (σ))}. (54)

• Case 2:

1 Expressions in H2, i.e j ∈ si and r ∈ s̄i

ỹ∗ijk(θ)ỹ
∗∗
irp(θ) = exp{∆1(θ) + Ω1(θ) + ∆2(θ) + Ω2(θ)},

ỹ∗ijk(θ)ỹ
∗∗
irp(θ̂) ≈ exp{∆1(θ) + Ω1(θ) + ∆2(θ) + Ω2(θ) + (β̂ − β)T (∆∗2(β) + Ω∗2(β))+

(σ̂ − σ)T (∆∗2(σ) + Ω∗2(σ))},
ỹ∗ijk(θ̂)ỹ

∗∗
irp(θ̂) ≈ exp{∆1(θ) + Ω1(θ) + (β̂ − β)T (∆∗1(β) + Ω∗1(β))+

(σ̂ − σ)T (∆∗1(σ) + Ω∗1(σ))+

∆2(θ) + Ω2(θ) + (β̂ − β)T (∆∗2(β) + Ω∗2(β)) + (σ̂ − σ)T (∆∗2(σ) + Ω∗2(σ))}.
(55)

• Case 3:
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 1 Expressions in H3, i.e g, r ∈ s̄i and g = r

ỹ∗∗igk(θ)ỹ
∗∗
irp(θ) = exp{2(∆2(θ) + Ω2(θ))},

ỹ∗∗igk(θ)ỹ
∗∗
irp(θ̂) ≈ exp{2(∆2(θ) + Ω2(θ)) + (β̂ − β)T (∆∗2(β) + Ω∗2(β))+

(σ̂ − σ)T (∆∗2(σ) + Ω∗2(σ))},
ỹ∗∗igk(θ̂)ỹ

∗∗
irp(θ̂) ≈ exp{2(∆2(θ) + Ω2(θ) + (β̂ − β)T (∆∗2(β) + Ω∗2(β))+

(σ̂ − σ)T (∆∗2(σ) + Ω∗2(σ)))}. (56)

2 Expressions in H3, i.e g, r ∈ s̄i and g 6= r

ỹ∗∗igk(θ)ỹ
∗∗
irp(θ) = exp{∆(g)

2 (θ) + Ω
(g)
2 (θ) + ∆

(r)
2 (θ) + Ω

(r)
2 (θ)},

ỹ∗∗igk(θ)ỹ
∗∗
irp(θ̂) ≈ exp{∆(g)

2 (θ) + Ω
(g)
2 (θ) + ∆

(r)
2 (θ) + Ω

(r)
2 (θ) + (β̂ − β)T (∆

(r)∗
2 (β) + Ω

(r)∗
2 (β))+

(σ̂ − σ)T (∆
(r)∗
2 (σ) + Ω

(r)∗
2 (σ))},

ỹ∗∗igk(θ̂)ỹ
∗∗
irp(θ̂) ≈ exp{∆(g)

2 (θ) + Ω
(g)
2 (θ) + (β̂ − β)T (∆

(g)∗
2 (β) + Ω

(g)∗
2 (β))+

(σ̂ − σ)T (∆
(g)∗
2 (σ)) + Ω

(g)∗
2 (σ) + ∆

(r)
2 (θ) + Ω

(r)
2 (θ)+

(β̂ − β)T (∆
(r)∗
2 (β) + Ω

(r)∗
2 (β)) + (σ̂ − σ)T (∆

(r)∗
2 (σ) + Ω

(r)∗
2 (σ))}. (57)

The following step is to calculate the expected value for the above expressions. Let

δ1j ≡∆∗1(β) + Ω∗1(β) = xTij − 1T
[
α(j)T

γT

]
V̄ −1xi,

ρ1j ≡∆∗1(σ) + Ω∗1(σ) =
[
a1j b1j c1j

]T
,

where

a1j =1T
([0T

1T

]
−
[
α(j)T

γT

]
V̄ −1J

)
V̄ −1(l̄i − xiβ) +

1

2
1TΣ

(v)
1j 1,

b1j =1T
([1Tj

0T

]
−
[
α(j)T

γT

]
V̄ −1

)
V̄ −1(l̄i − xiβ) +

1

2
1TΣ

(u)
1j 1,

c1j =− 1T
[
α(j)T

γT

]
V̄ −1DV̄ −1(l̄i − xiβ) +

1

2
1TΣ

(e)
1j 1 +

1

2
.

Assuming that β̂ and σ̂ are unbiased estimators of β and σ respectively (Rao, 2003, chap.6), it
follows that

E[δT1j(β̂ − β)] =0

E[ρT1j(σ̂ − σ)] =0,

and

E[∆1(θ̂) + Ω1(θ̂)] =Ω1(θ)

Φ1(θ) ≡var[∆1(θ̂) + Ω1(θ̂)]

=var(∆1(θ)) + δT1jvar(β̂)δ1j + E[ρ1j(σ̂ − σ)]2

=1TVµ1j1 + λ1j
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 where

Vµ1j =1T
[
α(j)T

γT

]
V̄ −1

[
α(j) γ

]
1

λ1j =δT1jvar(β̂)δ1j + trace[E(ρ1jρ
T
1j)var(σ̂)].

The last term in λ1j is calculated using E(wtu)2 = trace[E(wwT )E(uTu)], where w and u are

random vectors. var(β̂) and var(σ̂) are the asymptotic covariance matrices of the estimators,
which are obtained from the inverse of the Fisher Information matrix under the REML procedure.
then we have

∆1(θ̂) + Ω1(θ̂) ∼ N(Ω1(θ),Φ1(θ)). (58)

Now,

• From case 1

1 Expressions in H1, i.e j, q ∈ si and j = q

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ)] = exp{2(Ω1(θ) + 1TVµ1j1)}

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ̂)] = exp{2Ω1(θ) +

1

2
ϕ1(θ)}

E[ỹ∗ijk(θ̂)ỹ
∗
iqp(θ̂)] = exp{2(Ω1(θ) + Φ1(θ))}, (59)

where

ϕ1(θ) = 4var(∆1(θ)) + λ1j .

Then

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ)]− 2E[ỹ∗ijk(θ)ỹ

∗
iqp(θ̂)] + E[ỹ∗ijk(θ̂)ỹ

∗
iqp(θ̂)] =

exp{2(Ω1(θ) + 1TVµ1j1)} − 2 exp{2Ω1(θ) +
1

2
ϕ1(θ)}+ exp{2(Ω1(θ) + Φ1(θ))} ≡ h1ij .

(60)

2 Expressions in H1, i.e j, q ∈ si and j 6= q

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ)] = exp{Ω(j)

1 (θ) + Ω
(q)
1 (θ) +

1

2
1T (Vµ1j + Vµ1q)1}

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ̂)] = exp{Ω(j)

1 (θ) + Ω
(q)
1 (θ) +

1

2
(1TVµ1j1 + Φ

(q)
1 (θ))}

E[ỹ∗ijk(θ̂)ỹ
∗
iqp(θ̂)] = exp{Ω(j)

1 (θ) + Ω
(q)
1 (θ) +

1

2
(Φ

(j)
1 (θ) + Φ

(q)
1 (θ))}. (61)

Then

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ)]− E[ỹ∗ijk(θ)ỹ

∗
iqp(θ̂)]− E[ỹ∗iqp(θ)ỹ

∗
ijk(θ̂)] + E[ỹ∗ijk(θ̂)ỹ

∗
iqp(θ̂)] =

exp{Ω(j)
1 (θ) + Ω

(q)
1 (θ)}[exp{1

2
1T (Vµ1j + Vµ1q)1} − exp{1

2
(1TVµ1j1 + Φ

(q)
1 (θ))}−

exp{1

2
(1TVµ1q1 + Φ

(j)
1 (θ))}+ exp{1

2
(Φ

(j)
1 (θ) + Φ

(q)
1 (θ))}] ≡ h1ijq. (62)

Then from (60) and (62) it follows that

H1 =
∑
j∈si

(Nij − nij)2h1ij +
∑
j∈si

∑
q∈si

(Nij − nij)(Niq − niq)h1ijqI(q 6= j). (63)
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 • From case 2

1 Expressions in H2, i.e j ∈ si and r ∈ s̄i

E[ỹ∗ijk(θ)ỹ
∗∗
irp(θ)] = exp{Ω1(θ) + Ω2(θ) +

1

2
1T (Vµ1j + Vµ2)1}

E[ỹ∗ijk(θ)ỹ
∗∗
irp(θ̂)] = exp{Ω1(θ) + Ω2(θ) +

1

2
(1TVµ1j1 + Φ2(θ))}

E[ỹ∗ijk(θ̂)ỹ
∗∗
irp(θ̂)] = exp{Ω1(θ) + Ω2(θ) +

1

2
(Φ1(θ) + Φ2(θ))}. (64)

Then

E[ỹ∗ijk(θ)ỹ
∗∗
irp(θ)]− E[ỹ∗ijk(θ)ỹ

∗∗
irp(θ̂)]− E[ỹ∗ijk(θ)ỹ

∗∗
irp(θ̂)] + E[ỹ∗ijk(θ̂)ỹ

∗∗
irp(θ̂)] =

exp{Ω1(θ) + Ω2(θ)}[exp{1

2
1T (Vµ1j + Vµ2)1} − exp{1

2
(1TVµ1j1 + Φ2(θ))}−

exp{1

2
(1TVµ21 + Φ1(θ))}+ exp{1

2
(Φ1(θ) + Φ2(θ))}] ≡ h2ijr. (65)

Then from (65) it follows

H2 =
∑
j∈si

∑
r∈s̄i

(Nij−nij )Nirh2ijr. (66)

• From case 3

1 Expressions in H3, i.e g, r ∈ s̄i and g = r

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ)] = exp{2(Ω2(θ) + 1TVµ21)}

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ̂)] = exp{2Ω2(θ) +

1

2
ϕ2(θ)}

E[ỹ∗∗igk(θ̂)ỹ
∗∗
irp(θ̂)] = exp{2(Ω2(θ) + Φ2(θ))}, (67)

where

ϕ2(θ) =4var(∆2(θ)) + λ2

λ2 =δT2 var(β̂)δ2 + trace[E(ρ2ρ
T
2 )var(σ̂)]

δT2 =∆∗2(β) + Ω∗2(β)

ρT2 =∆∗2(σ) + Ω∗2(σ) =
[
a2 b2 c2

]T
E[∆2(θ̂) + Ω2(θ̂)] =Ω2(θ)

Φ2(θ) ≡var[∆2(θ̂) + Ω2(θ̂)]

=var(∆2(θ̂)) + δT2 var(β̂)δ2 + E[ρ2(σ̂ − σ)]2

=1TVµ21 + λ2,

with

a2 =1T
([0T

1T

]
−
[

0T

γT

]
V̄ −1J

)
V̄ −1(l̄i − xiβ) +

1

2
1TΣ

(v)
2 1

b2 =− 1T
[

0T

γT

]
V̄ −1IV̄ −1(l̄i − xiβ) +

1

2
1TΣ

(u)
2 1

c2 =− 1T
[

0T

γT

]
V̄ −1DV̄ −1(l̄i − xiβ) +

1

2
1TΣ

(e)
2 1 +

1

2
.
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 Then

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ)]− 2E[ỹ∗∗igk(θ)ỹ

∗∗
irp(θ̂)] + E[ỹ∗∗igk(θ̂)ỹ

∗∗
irp(θ̂)] =

exp{2(Ω2(θ) + 1TVµ21)} − 2 exp{2Ω2(θ) +
1

2
ϕ2(θ)}+ exp{2(Ω2(θ) + Φ2(θ))} ≡ h3ig.

(68)

2 Expressions in H3, i.e g, r ∈ s̄i and g 6= r

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ)] = exp{Ω(g)

2 (θ) + Ω
(r)
2 (θ) +

1

2
1T (Vµ2g + Vµ2r)1}

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ̂)] = exp{Ω(g)

2 (θ) + Ω
(r)
2 (θ) +

1

2
(1TVµ2g1 + Φ

(r)
2 (θ))}

E[ỹ∗∗igk(θ̂)ỹ
∗∗
irp(θ̂)] = exp{Ω(g)

2 (θ) + Ω
(r)
2 (θ) +

1

2
(Φ

(g)
2 (θ) + Φ

(r)
2 (θ))}. (69)

Then

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ)]− E[ỹ∗∗igk(θ)ỹ

∗∗
irp(θ̂)]− E[ỹ∗∗irp(θ)ỹ

∗∗
igk(θ̂)] + E[ỹ∗∗igk(θ̂)ỹ

∗∗
irp(θ̂)] =

exp{Ω(g)
2 (θ) + Ω

(r)
2 (θ)}[exp{1

2
1T (Vµ2g + Vµ2r)1} − exp{1

2
(1TVµ2g1 + Φ

(r)
2 (θ))}−

exp{1

2
(1TVµ2r1 + Φ

(g)
2 (θ))}+ exp{1

2
(Φ

(g)
2 (θ) + Φ

(r)
2 (θ))}] ≡ h3igr. (70)

Then from (68) and (70) it follows

H3 =
∑
g∈s̄i

N2
igh3ig +

∑
g∈s̄i

∑
r∈s̄i

NigNirh3igrI(r 6= g). (71)

4 Derivation of the corrected EB predictor

By the fact that the predictor (15) is a nonlinear transformation of estimators of parameters,

E[ŷEBijk ] 6= E[yMMSE
ijk (θ)]. (72)

The aim of this section is to find approximately unbiased predictor of the non-sampled value of yijk.
Now considering the two cases separately and using the expressions calculated in the subsection 3.2
it follows that:

case 1 : j ∈ si

E[ỹ∗ijk(θ)] = exp{Ω1(θ) +
1

2
1TVµ1j1} (73)

and

E[ỹ∗ijk(θ̂)] = exp{Ω1(θ) +
1

2
(1TVµ1j1 + λ1j)} (74)

Therefore,

E[ỹ∗ijk(θ̂)]

E[ỹ∗ijk(θ)]
≈ exp{1

2
λ1j}. (75)

Now from (75), we define the multiplicative approximately bias-corrected predictor (BCP)

ŷ∗EB.BCPijk = ŷ∗EBijk exp{−1

2
λ̂1j}, (76)

where λ̂1j = λ1j(θ̂), with λ1j(θ) = δT1jvar(β̂)δ1j + trace[E(ρ1jρ
T
1j)var(σ̂)].
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 case 2 : Case j ∈ s̄i

E[ỹ∗∗ijk(θ)] = exp{Ω2(θ) +
1

2
1TVµ21} (77)

and

E[ỹ∗∗ijk(θ̂)] = exp{Ω2(θ) +
1

2
(1TVµ21 + λ2)} (78)

Therefore,

E[ỹ∗∗ijk(θ̂)]

E[ỹ∗∗ijk(θ)]
≈ exp{1

2
λ2}. (79)

From (79), we define the multiplicative approximately bias-corrected predictor (BCP)

ŷ∗∗EB.BCPijk = ŷ∗∗EBijk exp{−1

2
λ̂2}, (80)

where λ̂2 = λ2(θ̂), with λ2(θ) = δT2 var(β̂)δ2 + trace[E(ρ2ρ
T
2 )var(σ̂)].

Now from (76) and (80) the approximately corrected-bias predictor for ȲMMSE
i is given by:

Ȳ EB.BCP
i =

1

Ni

∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

ŷ∗EB.BCPijk +
∑
j∈s̄i

Nij∑
k=1

ŷ∗∗EB.BCPijk

 . (81)

.

5 Parametric bootstrap for MSE estimation

The parametric bootstrap that we propose here to estimate the MSE of EB bias-corrected predictors
Ȳ EB.BCP
i , is an extension of the parametric bootstrap method for finite population proposed by

González-Manteiga et al., 2008, Molina and Rao, 2009. This parametric procedure is described as
below:

1. Fit model (5) to sample data and obtain model parameters estimates β̂, σ̂2
v , σ̂

2
u, and σ̂2

e .

2. Generate bootstrap random area effects as v∗i ∼ N(0, σ̂2
v), i = 1, . . . ,M .

3. Generate, independently of random area effects v∗i , bootstrap random cluster effects
u∗ij ∼ N(0, σ̂2

u), i = 1, . . . ,M , j = 1, . . . ,Mi.

4. Generate, independently of random area effects v∗i and random cluster effects u∗ij , bootstrap

random errors e∗ijk ∼ N(0, σ̂2
e), i = 1, . . . ,M , j = 1, . . . ,Mi,j = 1, . . . , Nij .

5. Construct a bootstrap population using the estimated model

log(y∗ijk) = l∗ijk = xTij β̂ + v∗i + u∗ij + e∗ijk, (82)

and calculate the small area population mean

Ȳ ∗i =
1

Ni

Mi∑
j=1

Nij∑
k=1

y∗ijk. (83)
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 6. select the elements l∗ijk that correspond to the indices contianed in the sample s, denote l∗s .

Fit the model to l∗s obtining new model parameters estimates β̂∗, σ̂2∗
v , σ̂2∗

u , and σ̂2∗
e .

7. Using the bootstrap sample data l∗s and the known matrix X, apply the EB method with its
correction as it was described in sections 2 and 4 respectively, and calculate bootstrap EB
prodictors, Ȳ EB∗

i , i = 1, . . . ,M .

Note that the bootstrap population model, given the original sample data, preserve properties of
the original population model. This can be observed as follows

E∗(v
∗
i |l) = E∗(u

∗
ij |l) = E∗(e

∗
ijk|l) = 0, var∗(v

∗
i |l) = σ̂2

v , var∗(u
∗
ij |l) = σ̂2

u , var∗(e
∗
ijk|l) = σ̂2

e , (84)

where E∗ and var∗ represent conditional expectation and variance with respect to the distribution
defined by the bootstrap model(96) given the sample data ls.
Thereby, the distribution of the bootstrap population l∗ (given sample data ls) mimics that of the
original population l. Then an estimator of MSE(Ȳ EB.BCP

i ) is the bootstrap MSE of the bootstrap
EB.BCP, defined as

MSE∗(Ȳ
EB.BCP∗
i ) = E∗[(Ȳ

EB.BCP∗
i − Ȳ ∗i )2] (85)

In practice, this expression can be approximated through a Monte Carlo simulation, by repeating
steps 2−7 a large number of times, B, and then taking the mean over the the B replicates as follows:

Let Ȳ
∗(b)
i and Ȳ

EB.BCP∗(b)
i be the area population mean and its corresponding EB bias-corrected

predictor for the bootstrap replicate b, for b = 1, . . . , B. Then, the estimator of the MSE is calculated
as

MSE(Ȳ EB.BCP
i ) =

1

B

B∑
b=1

(Ȳ EB.BCP ∗(b)
i − Ȳ ∗(b)i )2. (86)

5.1 Bias-corrected MSE estimator based on single bootstrap

A naive estimator of MSE is

ˆMSEi = M1i(θ̂) +M2i(θ̂), (87)

where M1i(θ̂) and M2i(θ̂) are the expressions (??) and (??), respectively, evaluated at the estimator
of θ. In general, it is known that M1i(θ̂) is an asymptotically unbiased estimator (Prasad and Rao,
1990). Furthermore, M1i(θ) is a nonlinear function of θ, the naive estimator M1i(θ̂) in (87) is biased,
so that we need to correct the bias. Given the complexity of the expression of M1i(θ), in subsection
3.1, it is not possible to correct the bias using analytical approach. The alternative solution is to
use the bootstrap method. We derive the single bootstrap bias-corrected estimator of M1i(θ) in two
steps (Butar and Lahir, 2003; Rachida, O., 2011; Kubokawa and Nagashima, 2012). At the first
step, under the assumption of known parameters the derivation of MSE is presented. At the second
step, a parametric bootstrap approach, described at the beginning of this section, is proposed for
bias correction and approximation of the uncertainty due to the estimation of θ.

Definition : The single bootstrap bias corrected estimator is defined as

MBC
1i (θ̂) = M1i(θ̂) + b1i(θ̂), (88)

where b1i(θ̂) = M1i(θ̂)− Eθ̂(M1i(θ̂
∗)).

Below, we present a second stage parametric bootstrap algorithm for bias-correction of the MSE
estimator:
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 1. Fit model (5) to sample data and obtain model parameters estimates θ̂ = (β̂, σ̂2

v , σ̂
2
u, σ̂

2
e)
T .

2. Generate bootstrap random area effects as v∗i ∼ N(0, σ̂2
v), i = 1, . . . ,m.

3. Generate, independently of random area effects v∗i , bootstrap random cluster effects
u∗ij ∼ N(0, σ̂2

u), i = 1, . . . ,m, j = 1, . . . ,mi.

4. Generate, independently of random area effects v∗i and random cluster effects u∗ij , bootstrap

random errors e∗ijk ∼ N(0, σ̂2
e), i = 1, . . . ,m, j = 1, . . . ,mi,j = 1, . . . , nij .

5. Construct a bootstrap samples using the estimated model

log(y∗ijk) = l∗ijk = xTij β̂ + v∗i + u∗ij + e∗ijk, (89)

and for each bootstrap replicate b, for b = 1, . . . , B we calculate the bootstrap version
M1i(θ̂)

(b). Then a Monte Carlo estimate of M1i is given by

MBC
1i (θ̂) = 2M1i(θ̂)−

1

B

B∑
1=b

M1i(θ̂)
(b). (90)

Furthermore, the unbiased estimator of the MSE based on the parametric bootstrap is given by

m̂sei = MBC
1i (θ̂) +M2i(θ̂). (91)

From the described algorithm, we set out the justification behind this approach as it was introduced
by Butar and Lahiri (2003) and presented in Kubokawa and Nagashima (2012):
Let f(θ) be a smooth function. In the spite of the fact that f(θ̂) is an asymptotically unbiased
estimator of f(θ), in general, there exists a second-order bias. Then, we need to approximate the
expectation E[f(θ̂)]. It is supposed that the approximation is given by

E[f(θ̂)] = f(θ) + b(θ), (92)

where b(θ) is a smooth function . Then,

E[f(θ̂)− b(θ̂)] =E[f(θ̂)]− E[b(θ̂)]

={f(θ) + b(θ)} − b(θ)
=f(θ). (93)

Using model (96), it follows that

Eθ̂[f(θ̂∗)|l] = f(θ̂) + b(θ̂), (94)

where Eθ̂[.|l] is the conditional expectation with respect to the model (96) given l, and the calculation

of θ̂∗ is the same as that of θ̂ except that θ̂∗ is calculated based on l∗ instead of l. Hence from (93),
we have

E[2f(θ̂)− Eθ̂[f(θ̂∗)|l]] =E[f(θ̂)− Eθ̂[f(θ̂∗)− f(θ̂)|l]]
=E[f(θ̂)− b(θ̂)]
=f(θ). (95)

Therefore, 2f(θ̂)− Eθ̂[f(θ̂∗)|l] is the second-order unbiased estimator of f(θ).
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 5.2 Double parametric bootstrap for bias-correction

Following Hall and Maiti (2006) and adopting a double parametric bootstrap to bias-correction, we
provide a population double bootstrap bias adjustment to the MSE estimator of EB bias-corrected
predictors Ȳ EB.BCP

i , but in the setting of the parametric bootstrap method for finite population
proposed by González-Manteiga et al., 2008, Molina and Rao, 2009. The double parametric proce-
dure is described as below:

1. Fit model (5) to sample data and obtain model parameters estimates β̂, σ̂2
v , σ̂

2
u, and σ̂2

e .

2. Generate bootstrap random area effects as v∗i ∼ N(0, σ̂2
v), i = 1, . . . ,M .

3. Generate, independently of random area effects v∗i , bootstrap random cluster effects
u∗ij ∼ N(0, σ̂2

u), i = 1, . . . ,M , j = 1, . . . ,Mi.

4. Generate, independently of random area effects v∗i and random cluster effects u∗ij , bootstrap

random errors e∗ijk ∼ N(0, σ̂2
e), i = 1, . . . ,M , j = 1, . . . ,Mi,j = 1, . . . , Nij .

5. Construct a bootstrap population using the estimated model

log(y∗ijk) = l∗ijk = xTij β̂ + v∗i + u∗ij + e∗ijk, (96)

and calculate the small area population mean

Ȳ ∗i =
1

Ni

Mi∑
j=1

Nij∑
k=1

y∗ijk. (97)

6. select the elements l∗ijk that correspond to the indices contianed in the sample s, denote l∗s .

Fit the model to l∗s obtining new model parameters estimates β̂∗, σ̂2∗
v , σ̂2∗

u , and σ̂2∗
e .

7. Using the bootstrap sample data l∗s and the known matrix X, apply the EB method as
described in Section 2 and calculate bootstrap EB prodictors, Ȳ EB∗

i , i = 1, . . . ,M . Then an
estimator of MSE(Ȳ EB.BCP

i ) is the bootstrap MSE of the bootstrap EB.BCP, defined as

MSE∗(Ȳ
EB.BCP∗
i ) = Eθ̂[(Ȳ

EB.BCP∗
i − Ȳ ∗i )2]. (98)

Let’s note Ȳ
∗(b1)
i and Ȳ

EB.BCP∗(b1)
i as the area population mean and its corresponding EB

bias-corrected predictor for the bootstrap replicate b1, for b1 = 1, . . . , B1. Then, the estimator
of the MSE is calculated as

MSE∗(Ȳ
EB.BCP∗
i ) = Bi1 =

1

B1

B1∑
b1=1

(Ȳ EB.BCP ∗(b1)
i − Ȳ ∗(b1)

i )2. (99)

8. For each bootstrap replicate b1 = 1, . . . , B1, obtain parameters estimates β̂∗(b1), σ̂
2∗(b1)
v , σ̂

2∗(b1)
u ,

and σ̂
2∗(b1)
e , and generate for b2 = 1, . . . , B2:

v∗∗i ∼ N(0, σ̂2∗(b1)
v ), i = 1, . . . ,M

u∗∗ij ∼ N(0, σ̂2∗(b1)
u ), i = 1, . . . ,M, j = 1, . . . ,Mi

e∗∗ijk ∼ N(0, σ̂2∗(b1)
e ), i = 1, . . . ,M, j = 1, . . . ,Mi, j = 1, . . . , Nij

30



 
 9. Constructing a new bootstrap populations using

log(y∗∗ijk) = l∗∗ijk = xTij β̂
∗(b1) + v∗∗i + u∗∗ij + e∗∗ijk, (100)

and calculate the small area population mean

Ȳ ∗∗i =
1

Ni

Mi∑
j=1

Nij∑
k=1

y∗∗ijk. (101)

10. Select the elements l∗∗ijk that correspond to the indices contianed in the sample s, denote l∗∗s .

Fit the model to l∗∗s obtining new model parameters estimates β̂(b2), σ̂
2(b2)
v , σ̂

2(b2)
u , and σ̂

2(b2)
e .

11. Using the bootstrap sample data l∗∗s and the known matrix X, we apply the EB method as
described in sections 2 and 4 respectively, and calculate bootstrap EB prodictors, Ȳ EB∗∗

i ,
i = 1, . . . ,M . Then an estimator of MSE(Ȳ EB.BCP

i ) is the bootstrap MSE of the bootstrap
EB.BCP, defined as

MSE∗∗(Ȳ
EB.BCP∗∗
i ) = Eθ̂∗ [(Ȳ EB.BCP∗∗

i − Ȳ ∗∗i )2] (102)

Noting Ȳ
∗∗(b2(b1))
i and Ȳ

EB.BCP∗∗(b2(b1))
i as the area population mean and its corresponding

EB bias-corrected predictor for the bootstrap replicate b2, for b2 = 1, . . . , B2. Then, the
estimator of the MSE is calculated as

MSE∗∗(Ȳ
EB.BCP∗∗
i ) = Bi2 =

1

B1

B1∑
b1=1

1

B2

B2∑
b2=1

(Ȳ EB.BCP ∗∗(b2(b1))
i − Ȳ ∗∗(b2(b1))

i )2. (103)

From (99) and (103) we get the population bias-corrected MSE estimator

ˆMSE(Ȳ EB.BCP
i ) = 2MSE∗(Ȳ

EB.BCP∗
i )−MSE∗∗(Ȳ

EB.BCP∗∗
i ). (104)

5.3 Bias-corrected MSE estimator based on double bootstrap

The population bias-corrected MSE estimator, (104), presented in subsection 5.2 can not be cal-
culated in practical settings since it depends on population quantities, in this subsection we derive
a bias-corrected MSE estimator of (87) based on a double bootstrap. As Davison and Hinkley
(1997) pointed out, the bootstrap does not provide exact solution, the same as in most statistical
methods, regarding the bias correction. However, it is helpful to have available a general technique
for making a bias correction to a bootstrap calculation. That technique is the bootstrap itself. The
bias-corrected estimator of M1i(θ) based on double bootstrap is given by (Rachida O., 2011; Chang
and Hall, 2015)

m̂bcc
1i = 3M1i(θ̂)− 3Eθ̂(M1i(θ̂

∗)|l) + Eθ̂∗(M1i(θ̂
∗∗)|l∗), (105)

where Eθ̂[.|l] is the conditional expectation with respect to the model (96) given l, and the calculation

of θ̂∗ is the same as that of θ̂ except that θ̂∗ is calculated based on l∗ instead of l, and Eθ̂∗ [.|l∗] is

the conditional expectation with respect to the model (100) given l∗, and the calculation of θ̂∗∗ is
the same as that of θ̂∗ except that θ̂∗∗ is calculated based on l∗∗ instead of l∗.
Applying the bootstrap algorithm of the subsection 5.2, the Monte Carlo approximation to the
quantity m̂bcc

1i is given by

m̃bcc
1i = 3M1i(θ̂)−

3

B1

B1∑
b1=1

M1i(θ̂
∗(b1)) +

1

B1B2

B1∑
b1

B2∑
b2

M1i(θ̂
∗∗(b2(b1))), (106)
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 where M1i(θ̂)

∗(b1) is the version of M1i(θ̂) calculated from (96) for each bootstrap replicate b1, for
b1 = 1, . . . , B1, and M1i(θ̂)

∗∗(b2(b1)) is the version of M1i(θ̂) obtained from (100) for each b2, for
b2 = 1, . . . , B2 for each b1.
Therefore, from (87) and (106) the bias-corrected MSE estimator based on double bootstrap is given
by

m̂sebcci = m̃bcc
1i +M2i(θ̂). (107)

6 Simulation study

For the purpose of evaluating the performance of the proposed EB predictors, a simulation experi-
ment is conducted in order to investigate the bias of MSE(Ȳ EB

i ), obtained under a studied model,
comparing the derived naive estimator, its proposed bootstrap estimator, and the double bootstrap
estimator of the MSE of EB estimators. Note that this experiment will be repited K = 100 times.
Under the model (5), we generate the response variable for the population units log(Yijk), similarly
to Molina and Rao (2009) but including an indicator of clusters within small area, where the in-
dicator variables mimic the real case where only categorical variables are available. We consider a
clustered finite population from which samples are drawn in two stages using simple random sam-
pling at each stage.
In summary, the specifications of the model for the kth simulation, for k = 1, . . . ,K, is:

1. We consider a balanced two-fold model, with a population size N = 120000 partitioned into
M = 30 small areas, with small area population size of Ni = 4000, i = 1, . . . ,M , and each
small area is composed of Mi = 40 clusters, i = 1, . . . ,M . Cluster population sizes are
Nij = 100, j = 1, . . . ,Mi, i = 1, . . . ,M .

2. Two dummy variables are used as covariates plus intercept. The population values of these
indicators for the units are generated from Bernoulli distributions Ber(phij),h = 1, 2, with
probabilities of success p1ij = 0.3 + 0.5i/M + 0.1j/Mi and p2ij = 0.2. The covariates are held
fixed across the simulated populations.

3. The fixed effects are β = (6, 0.03,−4)T .

4. The small area effects, cluster effects and individual errors are independent; with vi ∼ N(0, σ2
v),

uij ∼ N(0, σ2
u) and eijk ∼ N(0, σ2

e), where σ = (σ2
v , σ

2
u, σ

2
e) is such that σ2

v = 0.05, σ2
u = 0.2,

σ2
e = 0.025 . To imitate different situations that can be existe in real cases, simulation exper-

iments are repeated for various combinations of variance components: small area (Domain)
variability, σ2

v , and cluster (subdomain) variability, σ2
u.

5. Within each small area i, a sample of mi = 5 clusters is selected using simple random sampling
(SRS), and a simple random sample of size nij = 10 is drawn from each sampled cluster. The
small area sample sizes are equal ni = 50.

We generate a bootstrap population as it is described at the beginning of section 5. We draw a
sample from each Bootstrap population and we fit the model and we compute the MSE estimator
(107) and double parametric bootstrap MSE (104).

6.1 Simulation experiments

This experiment of simulation is motivated by the fact that practical usage of EB predictors requires,
of course, estimates of variance components. It consists of currying out several runs of the simulation
study, keeping constant the sample sizes, the population sizes and the number of levels and sublevels
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 of the random factors, and varying the values of σ2

v and σ2
u.

Sixteen tests of the experiment are carried out, for the sixteen possible combinations of the values
σ2
e = 0.025, σ2

u = {0.05, 0.1, 0.15, 0.2}, and σ2
v = {0.05, 0.1, 0.15, 0.2}, according to the table 1

r 1 2 3 4 5 6 7 8

σ
2,(r)
u 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1

σ
2,(r)
v 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

r 9 10 11 12 13 14 15 16

σ
2,(r)
u 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2

σ
2,(r)
v 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

Table 1: Combinations of σ2
u and σ2

v for a simulation experiment

6.2 Simulation results

The following plots represent the average of the square roots of the four versions of MSE across the
domains with respect to the variance components. In (Figure 1(a)), we show the behavior of those
MSEs when the domain and cluster variaances increase simultaneously, while the three remaining
plots show the behavior of MSEs when we fix the cluster variance , σ2

u, and varying the domain
variability, σ2

v .
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(a) Simulations whenσv
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(b) Simulations with σu
2 = 0.05
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(c) Simulations with σu
2 = 0.1
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(d) Simulations with σu
2 = 0.2

Figure 1: Average sqrt MSE across the domains with respect to the change in variance components.

The simulation experiments were repeated 100 times and the following average estimates were
obtained:

β̂ =(5.99, 0.04,−3.99), σ̂ = (0.0499, 0.199, 0.025).
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 In terms of prediction, after 100 Monte Carlo simulations, the following plot compare the average

by domain of population values to their predicted values.
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Figure 2: Averages of population and predicted values obtained after 100 simulations, with σ2
v = 0.05

and σ2
u = 0.2.

From the above simulations, we see that the estimates, as well as predictors are close to the true
values and thus, the proposed estimators support the theoretical results.

7 Concluding remarks and future research

The minimum mean squared error predictor under the proposed model for small area estimation
was developed. To obtain the empirical Bayes predictors of pupulation means for small areas,
the Scoring-Fisher algorithm based on restricted maximum likelihood to estimate the variance
components was used. Following Prasad and Rao (1990), the estimation theory of MSE for the
EB predictor, was adapted to the model under study and the closed form expressions of MSE
were obtained. Furthermore, we proposed the bias-corrected estimator of MSE under a parametric
bootstrap, as well as a double bootstrap method. We studied the prediction capacity of our model
under simulation experiments. The simulation studies established clearly the positive performance
of using the proposed model in terms of prediction.
In this study, the assessment of the estimated MSE was based on variance components analysis
and was centered on three versions of MSE: naive estimator, bias-corrected estimators (based on
simple and double bootstrap) and double bootstrap expressions. Examining the results obtained
during the simulation experiments and presented by means of plots (Figure 1), it shows that the
MSE along the domains increases in magnitude when the values of σ2

u and σ2
v increase or decrease

simultaneously (Figure 1(a)). In addition, the bias is moderately reduced in magnitude as the
values of σ2

u and σ2
v increased and decreased respectively (Figure 1(b),(c),(d)); that is, the larger

34



 
 the variance between clusters (sub-domains) and the smaller the variance between domains are,

the corrected MSE of the EB predictor becomes closer to the one obtained under the ideal double
bootstrap MSE. In summary, as the cluster variability σ2

u increases compared with the domain
variability, σ2

v , the corrected MSE estimators and bootstrap MSE versions are getting closer.
For the sake of illustration of our methodology, the simulation experiments were performed only for
the balanced case, that is, when the number of samples was the same for each cluster. For further
analysis, the experiment can be extended to the unbalanced case. This work confined the attention
to the framework of mixed models with homogeneous random area-specific effects. However, in
real life, this assumption may not always be justified. The assessment of the performance of the
proposed models including spatial dependent random area effects, as well as a development of
prediction intervals theoretically appropriate for lognormal data would be interesting avenues for
future research. We also wish to have some specific real data set and apply the results of this work.
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